
[CPARK] Software Design Document

Group members: Jiakai Xu (ax2155), Xintong Zhan (xz3165), Shichen Xu (sx2314)

Section 1 - Project Description

In the current era of big data and big models, where more and more tasks rely on parallel batch processing
of given data, thus, a light-weighted, distributed (or parallel) computing framework for C plus plus that
offers a fast and general-purpose large data processing solution is crucial in our life. We got the project
name from Apache Spark, and we aim to build a C plus plus version of a large data processing
framework, which would behave similarly to Spark with parallel processing (similar to the cluster
structure in Spark), immutable data (similar to RDD in Spark), and lazy evaluation (similar to
transformations in Spark).

In other words, we want to design a convenient, general, and high-level parallel computing framework
that automatically splits complex computing problems into sub-tasks and then intelligently assigns,
executes, and combines the sub-tasks over parallel threads (or even distributed machines). Users benefit
from the acceleration, scalability, and fault tolerance of parallel/distributed computing without the pain of
dealing with any low-level details other than the problem itself. Lazy evaluation will be applied during the
execution to reduce the usage of memory and computing resources.

Section 2 - Data Model Design

The CPARK library uses a Resilient Distributed Datasets (RDD) data model. An RDD is a read-only,
partitioned collection of records. It is a memory abstraction that distributes a set of lazily evaluated data
into several sub-partitions, allowing the sub-partitions to be actually computed by different threads, and
letting programmers perform efficient parallel computing in a more convenient and less error-prone
manner.

More formally, an RDD is an input_range that contains several splits. A split is a lazily evaluated
collection of records. The records (or elements) contained in a split can be of any type. RDDs can be
created through the operations by either (1) reading data from any existing views (2) generated by the
custom functions defined by users (3) applying transformations to existing RDDs.

Transformations of RDDs means conceptually applying some operations to the elements in an existing
RDD, and creating a new RDD that (conceptually) contains the transformed data.

Common transformations including filter, transform, flatMap, union, zip, etc. CPARK library provides an
aboundant set of transformations.

The transformations of RDDs can be applied and chained for any number of times or from any RDDs.
An existing RDD can create any number of different new RDDs by various transformations, and several
existing RDDs can create a new RDD by transformations such as union or zip. Thus, a typical workflow
in CPARK would form a directed acyclic graph (DAG), where the vertices are the RDDs (and the
transformed data inside it), and the edges are transformation operations and dependency relationships
between the RDDs.

Then the RDDs are created and the DAG is formed, the actual computation task is not started. It will wait
until some actions are called by the users to start the actual evaluation, and only the part of data needed
for the action will be evaluated.

This lazy evaluation feature of CPARK empowers the ability to do global optimization and refinements
for the actual computing tasks. The CPARK library can decide the order of computation and whether to
cache the intermediate results in a global scope.

Section 3 - User Interface Design

The CPARK library provides a generic programming styled interface, and an abundant set of concepts
that make the user program more readable and clear. It is completely compile-time polymorphism. The
CPARK library supports and works well with the C++ standard library, and follows its interface style.

3.1 RDD Interface Design

As described in Section 2, an RDD is a range of splits. More precisely, every RDD in CPARK library is a
view of splits with random access ability. Users can apply most of the helper functions in standard ranges
library to an RDD.

There are generally two categories of RDD in CPARK library: the creation RDD and the transformed
RDD. A creation RDD is those who are created directly and do not rely on other RDDs. These RDDs can
serve as the original vertex of a DAG task graph. Examples are PlainRDD (which reads data from any
view that is not an RDD) and GeneratorRDD (which creates elements by the functions specified by
users). The other category of RDD is transformed RDD, which is created by applying some operations to
one or several existing RDDs. These RDDs can serve as the intermediate vertices or final vertices of the
task DAG graph.

The RDDs (and all other classes or components in CPARK library) uses compile-time static
polymorphism (instead of runtime polymorphism) to achieve better performance and better type safety.
Typically RDDs created by different transformation types, by different transformation functions, or from
different types of previous RDDs, will have different types. For example, the type of a transformed RDD
will carry the following information:

(1) what type of transformation it is (filter, map, flatMap, or others)

(2) The type of the transformation function (like the filter function for filter transformation). It can be of
any callable object type that fits the type requirements (e.g. a function, a function pointer, a lambda
expression, a class with operator(), etc.).

(3) The (exact) type of the previous RDD.

There is a common RDD concept which fits different types of RDDs. Specifying the full type of an RDD
can be long and clumsy sometimes, so idiomatically users should use auto or concept::RDD auto to
declare a variable for an RDD.

As previously mentioned, an RDD is a view of Splits. It has public interfaces begin() const and end()
const that returns a pair of random access iterator and its sentinel. Typically, when a user is given an
RDD, he or she can do the following three things: (1) Create a new transformed new RDD from this

existing RDD, (2) Call an action upon this RDD to do some kind of actual computing and get the final
result (3) Get the splits from this RDD and use the splits to implement the user’s own parallel computing
patterns or tasks.

An RDD is a view, so it will have constant time copy and move operations. A new copied RDD will
conceptually have the same elements as the previous one.

3.2 Transformation Interface Design

A transformation turns an existing RDD to another new RDD containing the (lazily evaluated) new
elements, with the elements in the previous RDD unchanged.

Users can create a transformed RDD by either directly calling the constructor of the corresponding RDD
type, or using a pipelined operator | with a transformation calculator. This ensembles what users do with
the range adaptors in the standard ranges library. Users will have a smooth and painless experience with
CPARK if they are already familiar with C++ standard ranges library.

Most of the commonly used transformation operations are provided in CPARK library, including map,
flatMap, filter, sample, groupByKey, union, zip, and so many other ones.

To specify a transformation function for a transformation operation (for example, the function that filters
elements by receiving an element as a parameter and returning a boolean value in filter operation), users
can pass in any callable objects of any possible types as long as it fits the requirements for the argument
type and return value type. This callable object can be a function, a function pointer, a lambda expression,
a std::function object, or a class object that overrides the operator().

Note that there are generally two categories of transformations: The first category is transformations who
apply to elements or records as one single type; The second category is those transformations who only
make sense for elements or records of key-value types (i.e. Types that are pair-like, with a first and a
second member that gets its key and value). Examples for the first category include map, filter, flatMap.
Examples for the second category include groupByKey, crossProduct.

3.3 Actions Interface Design

An action starts the actual computation task to a lazily evaluated RDD and gets the final result based on
the parallel policy chosen by the user. It marks the end of the CPARK task graph. Before an action is
invoked, the CPARK task graph is resilient and has low CPU cost. After an action is invoked, the
CPU-intensive tasks will start.

Currently, the actions include reduce, count, and collect.

Users can invoke an action by either directly calling the constructor of the corresponding action, or using
a pipelined operator | with a helper action calculator.

3.4 Split Interface Design

A split is conceptually a sub-partition of an RDD, and it is actually implemented as a view of elements or
records. Users can apply all of the functions and operations in the standard ranges library that fits a view
to a split.

Except for the features of a view of elements, splits also have some dependency relationships with each
other.

Precisely speaking, if the evaluation of the elements in a split would need the values of the elements from
another split, we say a split is DEPENDENT on the other split. A transformation of RDD must cause the
splits in the new RDD to be dependent on some of the splits in the previous RDD. For example, in a map
transformation, to calculate the values of the elements in a new split, we must know the values of the
elements in the corresponding previous split. Only then can we apply the map function to those elements
and create the new elements.

Technically speaking, it is not necessary to expose the split interface to the users. The users would already
have the ability to do the parallel tasks given the RDD interfaces and action interfaces. However, we want
to enable the users to define their own parallel computing pattern beyond the transformations and actions
provided in CPARK library (though we think they are already enough for most of the tasks), so we choose
to expose the splits as a public interface to the users.

3.5 Configuration

Users can specify their own configurations for the parallel computing tasks by setting the corresponding
fields in the Config class. Configurable items including the parallel policy (single-thread or multi-thread),
the level of concurrency, the debug name, the error logger, and others.

It is the user’s responsibility to make sure the configuration object does not go out of lifecycle before the
computing task is finished,

3.6 Execution Context

An execution context (or environment) for a set of CPARK tasks to run. It contains the information
needed to evaluate the Rdd-s and run the CPARK tasks, including the id information of Rdd-s and Splits,
the cache information, the thread synchronization information, and the scheduler information. Each Rdd
and Split will be included in one and only one execution context.

Generally the user does not need to know much about the execution context. The only thing they should
do with execution context is, the users are responsible for creating the execution context, make sure the
RDDs in the same task graph will have the same execution context, and make sure the execution context
does not go out of lifecycle before the task is done.

Users only need to explicitly pass execution context to the creation RDDs. Note that a task graph may
have several RDDs, so users should be careful to pass the same execution context to those creation RDDs,
and make sure the execution context is valid during the computation.

Section 4 - Implementation Design

4.1 Global View

The diagram below shows a rough overview of the components that make up the whole CPARK
implementation.

From a high point of view, a complete CPARK task graph is made up of the RDDs (as vertices), the
transformations (as edges), the action, and the execution context. Each RDD consists of its splits, and
each split contains the elements and some meta information. The execution context contains the meta
information and the runtime information for the whole task graph.

The split contains the following information: (1) elements, which are not the actual values of the
elements, but only a pair of iterators that represents the range of the real elements. Only when iterating
and dereferencing the iterator, will the real values of the elements be computed. (2) Split id. Each split
will have one unique ID within the scope of the execution context. The id will be assigned to the split
when it is constructed in a thread-safe manner. The ID is mainly used for indicating the dependency
relationship between the splits and handling the cache logic. (3) The cache logic. The cache logic
indicates how this split will be cached, the type of the cache, and when should the split read value from

the cache. (4) The computation logic. It indicates how the values of this split should be computed from
the values of its dependency split(s). (5) The context ptr. Each split will also have a point pointing to the
execution context.

The execution context has the following components and responsibilities: (1) The configuration, which
specifies the parallel task number, the debug name of this task graph, and other configurable options. (2)
The split ID and RDD ID information. The execution context keeps track of the ID of all the splits and
RDDs in the graph. (3) The split dependency information. The execution context knows about the whole
dependency information of every split, so it can do some global optimization based on this information.
(4) The cache. The cache stores the cached value of the splits whom the execution context decides to
cache. (5) The thread synchronization information. It coordinates the threads (scheduling the threads,
waiting for values, waiting for cache, etc.) when the actual tasks are being executed.

Note that there are two types of different information: the creation information and the runtime
information. The creation information are those who are created when the RDDs are constructed. This
includes the RDD and split ID, the dependency relationship, the configuration. The runtime information
are those who are created and needed when the actual computing tasks are being executed, including the
cache, the thread synchronization information.

4.2 Making Use of Iterators and Ranges

The implementation (and also the interface, of course) heavily relies on the iterators. This enables us (and
the users) to better integrate it with the C++ standard library and conveniently make use of the helper
functions in the standard ranges library.

The RDD’s view interface is actually implemented as a pair of iterators that indicates its splits, and the
splits’s view interface is also implemented by a pair of iterators that indicates its elements.

The transformations are also implemented by iterators. For each transformation, we implemented our own
special iterators that achieves this transformation logic.

The cache logic is also integrated in the iterators. We designed a special kind of iterator that can either
compute values from the previous RDD, or read values from the cache. This makes the transformation
logic very clean and reasonable.

4.3 Cache and Global Optimization

Because the CPARK library will start to execute the actual tasks after the whole computing graph is
constructed, it will have a chance to analyze the global information and do some optimization based on
that.

To decide how to cache the values of splits to avoid duplicate computation, we define two kinds of
dependencies between the splits: the NARROW dependency and the WIDE dependency. The narrow
dependent split means there is less than or equal to one of the other splits relying on this split. The wide
dependent split means there are more than one splits depending on it.

Currently, if a split is a widely dependent split, we will cache its value in the execution context. The result
of a chain of narrowly dependent splits will be calculated directly without storing any intermediate
results. When the result of a widely dependent split is needed, the current thread will wait until the result
of that split is computed and cached, and the following threads needing its value can also get it from the
cache. In this case, we reduce duplicate computation and save CPU resources.

4.4 Inner Concurrency Model

Currently the CPARK library uses std::async to execute the actual tasks, and use the promise/future model

for inter-threads communication and synchronization. We would plan to add support for user customized
thread pools in the future.

4.5 Achieving Zero-Overhead Abstraction

The CPARK library follows the zero-overhead abstraction principle in a best-effort manner. We have tried
our best to reduce any extra runtime overhead in the implementation. The library uses complete
compile-time polymorphism to avoid virtual function calls in the runtime; The argument for user
customized functions (e.g. functions passed to filter or map) is generically typed (instead of using
std::function) to achieve better inline-ness. The cache logic is well designed and implemented so that it
will introduce no extra runtime cost for the tasks that do not use cache. Any unnecessary copy operation is
carefully avoided. We believe the users will only pay what he or she used, and get almost the same
performance as the same hand-written parallel program using low-level parallel computing facilities.

