
BuggySoft Bug 
Tracker

Final Presentation



TABLE OF CONTENTS

Project Overview

What is BuggySoft?

Demo
Walking Through The 
Project 

01

03

Services

Implementation

Collaboration
Work Division + Next 
Steps

02

04



Project Overview

01

What is BuggySoft?



What is BuggySoft?
● Job search is hard

○ As new students in the CS field, we often have to apply to hundreds of jobs 

before securing one position 

● Web application designed to help job seekers efficiently manage their job search

● Core features:

○ User authentication and verification through secure service

○ Job scraping – user simply inputs link to job posting in our app, we retrieve 

the information for you

○ Search through our database for a specific job by job ID

○ Keep everything in one organized location









Services

02

The Parts



User Service

● User storage service for BuggySoft Job Tracker

● Built in Java 17, using SpringBoot

● Microservice architecture with RESTful endpoints for modular functionality

● Responsible for user authentication, management, and storage 

○ Specific functionality:

■ User registration, login, deletion, storage in backend database

■ Bulk operations for retrieving list of all users

● Status monitoring for asynchronous requests involving bulk operations





Verification Service

● Email verification service for BuggySoft Job Tracker

● Built in Java 17, using SpringBoot

● Microservice architecture with RESTful endpoints for modular functionality

● Responsible for authenticating user login attempts 

○ Specific functionality:

■ Ensure secure account activation and authentication 

■ Send and receive verification codes, sent to user email upon 

registration attempt





Communication (User & Verification)

● Frontend UI communicates with registration endpoint on user service

● Upon receiving response from service, UI then communicates with verification 

service to send a code to the newly registered email, prompting the user to enter 

the code

● Only upon receipt of correct code will the UI call the /saveUser endpoint (hidden 

endpoint) to actually save the user





Job Service

● Service for user to store or retrieve the job they are interested in

● Built in Python 3.11.2, using FastAPI

● A composite microservice (interact with Scrape Service) with RESTful endpoints

● Responsible for storing all job related information for users

○ Specific functionality:

■ Store job and all related information that the user is interested in;

■ Retrieve all jobs and their related information by searching keywords





Scrape Service

● Service to scrape the website for job related information given the URL

● Built in Python 3.11.2, using FastAPI

● A composite microservice (interact with Job Service) with RESTful endpoints

● Responsible for scraping the web page and retrieving the scraped file

○ Specific functionality:

■ Scrape the given URL webpage and return a handle to the scraped data;

■ Retrieve the scraped file for the given hash





Communication (Job & Scrape)



Demo

The Runthrough

03



屏幕录制2024-12-10上午11.22.25.mov

Demo

http://drive.google.com/file/d/1CZOkxaZ0lAN6UF02MfwAx-mFIlYwj1mK/view


Contributions

The Teams

04



Division of Labor

● Three Teams

○ “Java” team – responsible for implementation + development of user 

and verification services

○ “Python” team – responsible for implementation + development of job 

and scraping services

○ UI team – responsible for frontend UI design and logic development

● Meeting coordination and milestone management

○ Jiakai Xu + Suwei Ma



Contributions

● Java Group
○ Suwei Ma: Implementation of user and verification services, documentation, completion of REST 

interface for user service, 202 Accepted (asynchronous and synchronous), OpenAPI documentation, 
Sprint report organization

○ Avery Fan: Implementation of user and verification services, cloud database setup and deployment 
on Google CloudSQL, physical model diagram, logging logic for services, links section, pagination, 

JWT tokens
○ Michael Wang: Assistance with user and verification service implementation, documentation, 201 

Created + helper functions for user service, implemented GET on link header for created resource
● Python Group

○ Jiakai Xu: Design and implementation of Scrape service; deploy Job and Scrape service on the server; 
assist development of Job service and middlewares; manage GitHub Organization

○ Ruizhe Fu: Initial and basic implementation for Job services; implement the connection between the 
Job service and Scrape service; implement Patch ; documentation; presentation

● UI Group
○ Haiyue Zhang: UI/UX design for Landing, Login, Verification Pages, Utilize user and verify service APIs 

to enable functionality, Deploy frontend on AWS EC2
○ Tianle Zhou: UI/UX design for Job services, Create Account Pages, Utilize job and scrape service APIs 

to implement functionality, Demo Video record 



What Next

● OAuthentication

○ Google?

● Use of external cloud services

● CI/CD

● Correlation ID/Propagation

● Service choreography/orchestration

● Cloud blobstore for UI

● Minor tweaks


	Slide 1: BuggySoft Bug Tracker
	Slide 2: TABLE OF CONTENTS
	Slide 3: Project Overview
	Slide 4: What is BuggySoft?
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Services
	Slide 9: User Service
	Slide 10
	Slide 11: Verification Service
	Slide 12
	Slide 13: Communication (User & Verification)
	Slide 14
	Slide 15: Job Service
	Slide 16
	Slide 17: Scrape Service
	Slide 18
	Slide 19: Communication (Job & Scrape)
	Slide 20: Demo
	Slide 21: Demo
	Slide 22: Contributions
	Slide 23: Division of Labor
	Slide 24: Contributions
	Slide 25: What Next

